A NEW PARADIGM IN EDUCATION: ARTIFICIAL INTELLIGENCE-ENHANCED PERSONALIZED LEARNING
DOI:
https://doi.org/10.20535/.2025.15.327338Ключові слова:
штучний інтелект, персоналізоване навчання, освітні технології, аналітика навчанняАнотація
The importance of Artificial Intelligence (AI) in modern times cannot be overstated, as it has become a transformative force across nearly every aspect of society. AI is playing an increasingly important role in education, transforming traditional methods of teaching and learning toward more personalized, adaptive approaches. This paper offers an in-depth examination of AI in the educational sector, highlighting the importance of personalized learning and the role of educational technology. AI-enhanced personalized learning utilizes advanced technologies to customize educational content for each student. By adjusting the pacing of lessons, AI ensures that students learn at a speed that suits their individual progress. It provides real-time feedback tailored to the unique needs, preferences, and cognitive abilities of each learner, enhancing their overall educational experience. This transformation holds great promise in significantly enhancing student engagement. By providing personalized content and immediate feedback, it encourages deeper involvement, motivating students to take an active role in their education. Additionally, this shift has the potential to improve academic performance by addressing individual learning needs. Ultimately, AI-powered personalized learning systems foster a more engaging, adaptive, and efficient educational environment. However, the widespread implementation of AI in education presents challenges, including ethical concerns. This paper explores the potential benefits and challenges of AI-powered personalized learning systems, emphasizing the need for guidelines for responsible AI implementation in education. The findings suggest that with careful planning and ethical consideration, AI can significantly enhance educational outcomes, offering a more inclusive and effective learning environment for diverse student populations.
Посилання
REFERENCES
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. Complete Edition. Addison Wesley Longman, Inc..
Ayeni, O. O., Al Hamad, N. M., Chisom, O. N., Osawaru, B., & Adewusi, E. (2024). AI in education: A review of personalized learning and educational technology. GSC Advanced Research and Reviews, 18(02), 261–271. Doi: https://doi.org/10.30574/gscarr.2024.18.2.0062
Baker, R. S. (2019). Challenges for the Future of Educational Data Mining: The Baker Learning Analytics Prizes. Journal of Educational Data Mining, 11(1), 1–17. https://doi.org/10.5281/zenodo.3554745
Baker, R., & Siemens, G. (2014). Educational Data Mining and Learning Analytics. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (pp. 253–272). chapter, Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139519526.016
Cesiah, Y. D., Mylene, D. S., John, M. T. T., & Carl Angello, B. D. C. (2024). The role of AI in personalized learning: Enhancing student engagement and academic performance. International journal of research publication and reviews. 5(5), 8495-8505.
D’Mello, S. K., & Graesser, A. C. (2015). Feeling, Thinking, and Computing with Affect-Aware Learning Technologies. In Calvo, R. A., D’Mello, S. K., Gratch, J., & Kappas, A. (Eds.), The Oxford Handbook of Affective Computing (pp. 419-434). Oxford University Press: New York, NY.
Frank, E. (2024). The Influence of artificial intelligence on education: Enhancing personalized learning experiences. EasyChair Preprint, 14675.
Gligorea, I., Cioca, M., Oancea, R., Gorski, A.-T., Gorski, H., & Tudorache, P. (2023). Adaptive Learning Using Artificial Intelligence in e-Learning: A Literature Review. Education Sciences, 13(12), 1216. https://doi.org/10.3390/educsci13121216
Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. International Journal of Artificial Intelligence in Education, 24, 470-497.
Kaswan, K. S., Dhatterwal, J. S., & Ojha, R. P. (2024). AI in personalized learning. In Advances in technological innovations in higher education (pp. 103-117). CRC Press.
Kubilay, S. (2021). Digital gap: Inequality problem in education. In A. K. Namlı (Ed.), Education & Science 2021 (p. 59-75). Efeakademi Publications, Turkey.
Mahmoud, C. F., & Sørensen, J. T. (2024). Artificial Intelligence in Personalized Learning with a Focus on Current Developments and Future Prospects. Research and Advances in Education, 3(8), 25-31.
Papamitsiou, Z., & Economides, A. A. (2014). Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Journal of Educational Technology & Society, 17(4), 49-64.
Prensky, M. (2001). Digital natives, digital immigrants part 2: Do they really think differently?. On the horizon, 9(6), 1-6. https://doi.org/10.1108/10748120110424843
Siemens, G. (2013). Learning Analytics: The Emergence of a Discipline. American Behavioral Scientist, 57(10), 1380-1400. https://doi.org/10.1177/0002764213498851
Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30-40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
Spector, J.M. (2018). Smart Learning Environments: Potential and Pitfalls. In: Persichitte, K., Suparman, A., Spector, M. (eds) Educational Technology to Improve Quality and Access on a Global Scale. Educational Communications and Technology: Issues and Innovations. Springer, Cham. https://doi.org/10.1007/978-3-319-66227-5_4
VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational psychologist, 46(4), 197-221.
Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Наше видання використовує положення про авторські права CREATIVE COMMONS для журналів відкритого доступу.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.